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 Learning to Use Muscles 

by 
Gerald E Loeb1 

The human musculoskeletal system is highly complex mechanically. Its neural control must deal successfully 
with this complexity to perform the diverse, efficient, robust and usually graceful behaviors of which humans are 
capable. Most of those behaviors might be performed by many different subsets of its myriad possible states, so how does 
the nervous system decide which subset to use? One solution that has received much attention over the past 50 years 
would be for the nervous system to be fundamentally limited in the patterns of muscle activation that it can access, a 
concept known as muscle synergies or movement primitives.  Another solution, based on engineering control 
methodology, is for the nervous system to compute the single optimal pattern of muscle activation for each task 
according to a cost function. This review points out why neither appears to be the solution used by humans.  There is a 
third solution that is based on trial-and-error learning, recall and interpolation of sensorimotor programs that are good-
enough rather than limited or optimal. The solution set acquired by an individual during the protracted development of 
motor skills starting in infancy forms the basis of motor habits, which are inherently low-dimensional. Such habits give 
rise to muscle usage patterns that are consistent with synergies but do not reflect fundamental limitations of the 
nervous system and can be shaped by training or disability. This habit-based strategy provides a robust substrate for the 
control of new musculoskeletal structures during evolution as well as for efficient learning, athletic training and 
rehabilitation therapy. 

Key words: redundancy, synergies, primitives, musculoskeletal mechanics, motor habits, control theory, optimal 
control, servocontrol. 
 
How might humans learn to use muscles? 

Current theories and strategies for 
sensorimotor control reflect the historical 
confluence of three very different methodologies:  
psychology, physiology and engineering. 
Psychology provides the taxonomy of behavior – 
collecting observations and organizing them 
according to perceived patterns and statistical 
correlations. Physiology is a reductionistic 
approach to discovering the mechanisms that give 
rise to the psychophysical observations. 
Engineering is the invention of solutions to what 
are often similar problems that arise in the world 
of machines. Engineers sometimes take 
inspiration from mechanisms of nature and 
sometimes propose that their own inventions 
might provide insights into biological systems. 

Theories of biological sensorimotor control 
and strategies for engineered sensorimotor control 
can both be divided into four general schemas:  

Biological organisms and bespoke machines 
are subject to very different constraints that 
determine the relative suitability of the control 
strategies in Table 1. Both simple organisms and 
simple machines may be able to use 
preprogrammed Central Pattern Generators 
(CPGs) effectively to perform a limited and 
predictable set of tasks. This confers the 
advantage of achieving the required performance 
immediately out of the box or egg or womb. The 
vestiges of such solutions may be found in CPGs 
for breathing (Von Euler, 1983), hatching (Suster 
& Bate, 2002) and quadrupedal locomotion (M. 
Shik, Orlovskiĭ, & Severin, 1966; M. L. Shik &  
 



10  Learning to Use Muscles 

Journal of Human Kinetics - volume 76/2021 http://www.johk.pl 

 
 
Orlovsky, 1976).  

For more sophisticated systems and open-
ended task sets, it may be necessary to learn 
solutions, but these take time to acquire and 
refine. Human infants make millions of trial-and-
error movements before they are proficient 
enough to function (Piek, 2006), movements that 
would frustrate the purchasers of a robot and 
wear it out before it became useful. Engineers 
have devised efficient methods to shorten 
somewhat this period of “system identification” 
of the plant to be controlled and to embed the 
resulting information in mathematical models that 
permit online analytical solutions to achieve 
optimal control of any goal (Johansson, 
Robertsson, Nilsson, & Verhaegen, 2000). 

For the most complex physical plants with 
many degrees of freedom and especially those 
with nonlinear properties such as biological 
musculoskeletal systems, analytical algorithmic 
solutions may not now (or ever) be 
computationally tractable or even theoretically 
feasible. One strategy is to simplify the plant by 
adding assumptions about the function of low-
level circuitry that intermediates between 
commands and plant. Muscle synergies have been 
proposed as a mechanism that might reduce the 
number of degrees of freedom that the central 
command generator need consider to perform 
tasks. Servocontrol by proprioceptive feedback 
has been proposed as a mechanism to linearize 
the mechanical output of individual muscles in 
response to neural activation.  

When it is not possible or advisable to 
simplify the plant sufficiently to enable analytical 
solutions, engineers increasingly turn to deep-
learning neural networks, whose workings are 
inspired by at least some of the mechanisms that 
biological neurons employ to process, store and 
retrieve information. Neural network 
methodology has been applied widely and 
successfully to understand biological perception 
and to enable machine perception. Neural 
networks are particularly attractive for biology 
because they should be able to adapt rapidly and 
safely to a plant with highly complex, 
unpredictable and changing properties. These are 
conditions of both ontogenetic development and 
phylogenetic evolution. This review considers 
whether motor action might share the same  
 

 
cortical computational substrate as learned 
perception.  

The topics below consider i) the complexity 
of the musculoskeletal system, ii) proposals to 
simplify this system in order to facilitate various 
control strategies, and iii) options to handle 
complexity that account for the motor behavior 
observed by psychologists and that might be 
embodied using biological components described 
by physiologists.  

I have chosen to illuminate these topics with 
quotations from the work of Nikolas Bernstein 
(1896-1966), published originally in Russian 
starting in the 1930s and discovered by Western 
scientists after its translation in 1967. The quotes 
are identified here with the dates of the original 
Russian and German journal articles plus the page 
number from the currently accessible version 
(Whiting, 1984), which includes Whiting’s 1967 
translation (Bernstein, 1967) plus invited 
commentaries from other researchers written in 
1983. Unfortunately, most current researchers 
have not read these in any language and rely 
instead on the interpretations of those who claim 
the work as precedent and justification for 
theories that Bernstein had already considered 
and rejected. I confess to having been in that camp 
until recently and to being now both chastened 
and encouraged. 

i) Is the musculoskeletal system redundant 
or overcomplete? 

Bernstein’s original and oft-cited observation 
of redundancy came from painstaking inverse 
dynamic analysis of cinematographical records of 
natural human behaviors. Bernstein appears to 
have been the first to perform such rigorous 
analyses. It is a disservice to reduce them to such 
a trivial observation. Most tasks can be 
accomplished by different combinations of joint 
trajectories (kinematics) or muscle activations 
(kinetics) because the description of the task is 
inevitably under-specified. If a task is described 
simply as repositioning a fingertip from one key 
to an adjacent one while standing at a keyboard, 
then this kinematic task could be accomplished by 
repositioning almost any or all joints from the 
metacarpophalangeal to the feet. All of those 
movements are possible but we usually choose to 
type with metacarpophalangeal and perhaps 
some wrist movement because they are better 
suited to achieving speed and accuracy. An expert  
 



by Gerald E Loeb 11 

© Editorial Committee of Journal of Human Kinetics 

 
can type at 120 words/minute, which corresponds 
to 600 characters/minute or 10 characters/second.  
If the brain is confused by a plethora of redundant 
options, it isn’t confused for long. 

The kinetic redundancy that was of more 
interest to Bernstein and his many followers 
focuses on how the nervous system decides which 
muscles to use to create a particular kinematic 
trajectory (Figure 1). Again the problem is 
obvious. A child asked to “make a muscle” first 
activates the muscles to hold the forearm in a 
vertical posture with the shoulder abducted and 
then cocontracts the biceps and triceps brachii to 
bulge the muscles without changing the arm 
posture. If the task were posed only as “hold your 
forearm vertical with your shoulder abducted,” 
EMG data will show one pattern of muscle use; 
“make a muscle” produces a different pattern for 
the same kinematics.  

None of this apparent redundancy surprised 
or discomfited Bernstein, nor did it by itself 
suggest a solution: 

“Knowledge about the processes of co-ordination 
is not obtained deductively from knowledge of the 
effector process.” N. Bernstein, 1940, p.233 

Bernstein considered the solution of 
restrictions on available strategies and rejected it: 

“Eliminating the redundant degrees of 
freedom…is employed only as the most primitive and 
inconvenient method, and then only at the beginning of 
the mastery of the motor skill, being later displaced by 
more flexible, expedient and economic methods of 
overcoming this redundancy through the organization 
of the process as a whole.” N. Bernstein, 1957, p.375 

One solution to the redundancy problem is to 
recognize that motor tasks include explicit or 
implicit requirements and constraints beyond the 
description of the primary goal of the task (G. E. 
Loeb, 2000). The subject is often instructed to 
make movements at one or two joints while not 
moving others in order to standardize 
performance and facilitate analysis. Figure 1 
shows 50 muscles operating 7 DOFs, but many of 
those muscles are multiarticular and act also on 
the numerous joints of the hand and fingers 
(distally) and cervical and thoracic vertebrae 
(proximally). Those joints were assumed to be 
rigid (called boundary conditions by engineers) in 
order to enable the forward simulation and 
inverse dynamic calculations that happened to be 
of interest to the authors. The total number of  
 

 
muscles in the hands, arms, shoulder girdle and 
cervicothoracic spine is not far from the 
mathematical minimum of two antagonist 
muscles required for each degree of freedom in 
the joints (G. E. Loeb, 2000).  

In many motor psychophysical experiments, 
the subject may be considering the likelihood of 
internal noise or external perturbations, which 
would favor some of the otherwise redundant 
solutions over others (Francisco J Valero-Cuevas, 
2016). The engineering concept of impedance 
provides a richer specification of a motor task that 
can be used to differentiate solutions that are 
redundant both kinematically (joint angles) and 
kinetically (net joint torques) until perturbed 
(Hogan, 1984a, 1984b). Impedance is a generalized 
way to describe the reactive forces that arise if a 
system is perturbed. It adds three dimensions to 
the kinematic specification of any task: stiffness 
(response to change of position), viscosity 
(response to change of velocity), and inertia 
(response to change of acceleration). Some of the 
stiffness and viscosity is the result of neurally 
mediated reflexes but a significant component 
reflects the intrinsic properties of muscles, which 
include highly nonlinear relationships between 
the length and velocity of the sarcomeres and the 
force produced at a constant level of activation 
(G.A. Tsianos & Loeb, 2017). By selecting different 
postural configurations for the same end-point, it 
is also possible to change the inertial response 
seen at the end-point (which is why it is wise to 
keep your elbow flexed when using your hand to 
feel for obstacles in the dark). By judiciously 
selecting different patterns of muscle coactivation 
that achieve the same net torques at the joints, the 
subject can enable useful “preflexes” that will 
generate forces that oppose perturbations without 
incurring the delays inherent in neurally 
mediated reflexes (Brown & Loeb, 2000). Similar 
strategies can reduce the effects of internal noise 
on the variability of forces exerted on objects (L. P. 
Selen, Franklin, & Wolpert, 2009; L. P. J. Selen, 
Beek, & van Dieen, 2005). 

Muscles that are anatomical synergists may 
have important differences in their architecture 
that give them advantages or disadvantages for 
tasks with different kinematics. Many 
psychophysical tasks require large numbers of 
repetitions. If the subject understands this, then 
minimizing effort and avoiding fatigue constitute  
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another implicit requirement of the task that 
would differentiate otherwise redundant 
solutions. Figure 2 illustrates the very slow and 
sometimes halting differentiation of three 
otherwise synergistic muscles into a new synergy 
pattern that achieves such a goal. The final 
patterns of muscle recruitment took advantage of 
architectural differences that affect their economy 
of force generation (energy consumed to produce 
a force-time impulse) for concentric vs. eccentric 
work.  

Humans often use their limbs to generate 
forces on objects rather than to produce unloaded 
postures. The neural circuitry for such tasks has 
been less studied because of poor animal models 
and methodological complexity. Valero-Cuevas 
introduced the notion of “feasible activation 
space” for the 7 muscles that enable the human 
index finger to generate 3D force vectors at the tip 
(Cohn, Szedlák, Gärtner, & Valero-Cuevas, 2018; 
Francisco J Valero-Cuevas, 2016; Francisco J 
Valero-Cuevas, Zajac, & Burgar, 1998). Many 
patterns of muscle recruitment can generate a 
given low-force vector, but these apparently 
redundant solutions disappear gradually and 
naturally as the required forces increase. What 
remains is a family of patterns that change 
abruptly as the direction of this maximal force 
generation changes, suggesting that the nervous 
system is able to control these muscles 
independently when necessary. 

ii) Do muscle synergies reduce the 
dimensionality of motor control? 

Synergies are extracted from multimuscle 
EMG records by any of several statistical methods 
for blind-source separation according to matrix 
factorization (Ebied, Kinney-Lang, Spyrou, & 
Escudero, 2018). What does that jargon mean in 
plain English? It means that the investigator 
already believes that the available EMG records 
do not span the space of all possible combinations 
but instead might be reduced to some unknown 
number of recurring and intermixed patterns. The 
question is then how many such underlying 
patterns are required to account for the data.  That 
depends on how much data are available and 
what is meant by “account for.”   

The importance of the data available for the 
synergy extraction can be appreciated by asking 
how many DOFs and synergies are present in a 
piano. We already know that the piano has 88  
 

 
independently operable keys (DOFs), but a 
synergy analysis based on the performance of one 
musical composition would find that a much 
smaller number of recurring patterns could 
describe the ways in which the keys are played. If 
the analysis includes another composition in 
another key and genre, the number of recurring 
patterns (i.e. synergies) will be greatly expanded. 

The criteria for claiming that a certain 
number of synergies account for the data are 
arbitrary, as is generally the case for statistics and 
probability. Extracting additional synergies is 
always possible and generally will then account 
for more of the underlying variance in the data, at 
least until the residual variance has been reduced 
to white noise. Many researchers assert that their 
synergies account for their data after they account 
for 90% of the variance (≥0.9 VAF). Nevertheless, 
the residual variance is usually considerably 
higher than the physical noise of the recordings, 
so why stop?  

One way to consider whether residual 
variance may be relevant to the brain’s control of 
the musculoskeletal system is to ask what motor 
error might be introduced if that variance were 
uncontrolled.  This turns out to be considerably 
higher as a result of the nonlinearities of the 
processes that convert electrical excitation (EMG) 
into myofilament activation, force production, 
torque generation and skeletal motion. For human 
locomotion, a forward simulation of trajectory 
from extracted synergies resulted in unacceptable 
errors that required considerable fine-tuning of 
the synergies to correct, defeating the purpose of 
synergies (Neptune, Clark, & Kautz, 2009). A 
similar forward simulation analysis for the 
simpler task of isometric force generation by 5 
wrist muscles (Figure 3) shows that the criterion 
of variance accounted for (VAF) approaches 
values generally seen as acceptable (90%) with 
only 3 synergies, but aiming error would then be 
over 30%. Aiming error doesn’t decline to less 
than 10% until the number of synergies equals the 
number of muscles (Aymar de Rugy et al., 2013). 
A similar conclusion was reached for a virtual 
force task involving 10 shoulder and elbow 
muscles moving a splinted forearm (Barradas, 
Kutch, Kawase, Koike, & Schweighofer, 2020). 

How many data points go into a synergy 
extraction depends on the number of EMG 
channels available as well as the number and  
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variety of behavioral tasks recorded (Ebied et al., 
2018). It is rarely feasible to record from all 
muscles that contribute forces to a set of tasks. 
The selection is usually determined by anatomical 
limitations on the placement of skin-surface EMG 
electrodes. That methodology often excludes or 
under-samples the deep, slow-twitch muscles that 
dominate low-force tasks (Chanaud, Pratt, & 
Loeb, 1991). EMG signals allegedly from deep 
muscles may be contaminated with cross-talk 
from superficial muscles, introducing spurious 
correlations (G. E. Loeb & Gans, 1986).  

One way to test the utility of synergy 
extraction without such methodological 
limitations is to apply it to a synthetic data set 
with a completely known set of muscle activations 
that produce ideal performance and then see how 
well performance would be captured by the 
synergies instead of the optimal recruitment. This 
enables simulation of typical experiments in 
which EMG signals are available from only a 
subset of the muscles that contribute to the 
behavior. For the simple, 2D isometric forearm 
task illustrated in Figure 4, the ability of synergies 
to account for performance depended on which 8 
of the 13 contributing muscles provided the EMG 
signals. Note that only 3 synergies account for 
~90% of the EMG variance for both the feasible 
(redundant) and the ideal (less-redundant) subset, 
but the aiming error remains unacceptable (>30%, 
Fig. 5E) even after extracting 8 synergies for the 8 
muscles that are most accessible experimentally 
but more redundant mechanically (Aymar de 
Rugy et al., 2013). 

iii) What neural mechanisms are 
responsible for motor behavior? 
Chasing Metaphors 

The strategies discussed below in more detail 
have often been presented in somewhat 
ambiguous language that might be summarized 
as follows: 

1. Human subjects exhibit limited patterns of 
muscle recruitment as if they had access only to a 
limited set of synergies. 

2. Human subjects perform tasks as if they were 
computing optimal patterns of muscle use from 
internal models of their musculoskeletal system. 

Physiologists are interested in such 
statements to the extent that they describe 
mechanisms that lead to experimentally testable 
hypotheses. Does “as if” connote mechanism or  
 

 
metaphor? If only metaphor, then the 
observations that they claim can be restated in 
much more prosaic form: 

i. Human subjects tend to reuse motor habits. 
ii. Human performance tends to become better 

with practice. 
While worth noting, statements i and ii are 

rather mundane observations rather than testable 
hypotheses; they have little value for reductionist 
science. The discussion below considers the 
mechanisms implied by statements 1 and 2 as well 
as alternative mechanisms that would account for 
observations i and ii. 

It is useful to consider the historical context 
that led to interest in mechanisms 1 and 2 above, 
which are not mutually exclusive. In one of the 
commentary chapters in the 1984 reprint, 
Bernstein was chided for discarding the 
possibility of an analytical solution for the “more 
flexible, expedient and economic methods of 
overcoming this redundancy through the organization 
of the process as a whole”. Geoffrey Hinton pointed 
to a recently developed, simplified Newton-Euler 
solution for inverse dynamics that had been 
implemented as software for a PDP11 
minicomputer (Luh, Walker, & Paul, 1980) to 
argue that an internal model of the 
musculoskeletal plant might be used by the 
nervous system as part of the computation of 
motor output (Hinton, 1984). Hinton further 
proposed “synergies” to eliminate the remaining 
redundancy to decide which muscles to use to 
generate the required torques at each joint, 
despite Bernstein’s rejection of that simplification 
and the above-noted problem of multiarticular 
muscles.  
Internal Models to Compute Motor Output 

For musculoskeletal systems and behaviors 
that are too complex for genetically 
preprogrammed solutions, the nervous system 
might compute analytical solutions to motor 
control problems as they occur; for overviews see 
(Shadmehr & Krakauer, 2008; Wolpert, Miall, & 
Kawato, 1998). The general form of engineered 
analytical solutions includes both a forward and 
inverse model that describe the behavior of the 
musculoskeletal plant (yellow cloud in Fig. 5). 
This idea has been fully developed and 
substantially validated as a representation of the 
oculomotor system for control of eye movements 
(Girard & Berthoz, 2005; Manto et al., 2013). It is  
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often assumed to generalize to limb control. The 
eye is a very special motor plant, however. It is a 
single ball-and-socket joint with negligible inertia 
and friction that is controlled by 6 muscles 
arranged in 3 pairs of antagonists that act 
orthogonally on its 3 DOFs. The oculomotor pools 
receive little or no proprioceptive or cutaneous 
feedback; adaptive control is based on visual slip 
of the image on the retina, which is tightly 
coupled to the eye movements produced by the 
muscles. These unique simplifications make it 
feasible for the cerebellum to construct and 
calibrate forward and inverse models through 
neurophysiologically realistic learning (Kawato, 
1999; Kawato & Gomi, 1992).  
Feasibility of Internal Models of Limbs 

None of the oculomotor simplifications are 
relevant to the musculoskeletal system of the rest 
of the body. In fact, they don’t even explain visual 
gaze, which often includes ballistic movement of 
the head as well as the eyes (Vliegen, Van Grootel, 
& Van Opstal, 2005), using the highly complex 
musculoskeletal linkage of the cervical spine 
(Richmond, Singh, & Corneil, 2001). In addition to 
mechanical complexity (Fig. 1), limb motor pools 
receive massive amounts of sensory feedback. 
Engineers often use such feedback for a local 
servocontroller that linearizes the behavior of 
each motor, simplifying the inverse model 
required by the controller in order to compute the 
feedforward commands. Does such feedback in 
biological systems (blue dotted line in Fig. 5) 
provide a similar simplifying assumption for the 
brain?  

In principle, the excitatory feedback from the 
muscle spindle stretch receptors could be used 
when desired to stabilize the length of individual 
muscles or the position of a joint if such 
servocontrol loops were configured reciprocally 
in antagonist pairs of muscles. The inhibitory 
feedback from the Golgi tendon organs could be 
used to stabilize the force output of individual 
muscles. A combination of the two servocontrols 
could be used to stabilize stiffness, the ratio of 
force to length, and a component of impedance 
control (Houk, 1979). Such feedback circuits had 
been identified by Sherrington in the cat spinal 
cord. Similar feedback circuits were in 
widespread use for the servocontrol of the motors 
used in many physiological experiments. The 
servocontrol metaphor gave rise to “Merton’s  
 

 
hypothesis” (Marsden, Merton, & Morton, 1976; 
Merton, 1953), “equilibrium point control” 
(Asatryan & Feldman, 1965; Bizzi, Hogan, Mussa-
Ivaldi, & Giszter, 1993; Feldman & Levin, 1995), 
“motor partitioning” (Windhorst, 1979; 
Windhorst, Hamm, & Stuart, 1989), “stiffness 
control” (Houk, 1979), and “task groups” (G. E. 
Loeb, 1985). All of these have fallen out of fashion 
as the interneuronal connectivity of the spinal 
cord was probed further (see subset illustrated in 
Figure 6). It became clear that these circuits 
reflected a much broader control scheme (Eccles & 
Lundberg, 1958; Jankowska, 2013; Jankowska & 
McCrea, 1983; Pierrot-Deseilligny & Burke, 2005). 
Furthermore, much of the descending control 
from the brain converges on this interneuronal 
circuitry (Eccles & Lundberg, 1959; Rathelot & 
Strick, 2009) rather than the originally proposed 
final common pathway of the motoneurons 
(Sherrington, 1906). From the brain’s perspective, 
the yellow cloud in Figure 5 must be extended to 
include this convergent circuitry (oversimplified 
for illustration as the blue summing junction) as 
well as the musculoskeletal apparatus (discussed 
further below). 

Yet another engineering tool has been 
applied in order to understand the spinal circuitry 
as a programmable regulator – a multi-input, 
multi-output form of servocontrol whose matrix 
of gains can be reset dynamically to achieve 
desirable states (He, Levine, & Loeb, 1991; G. E. 
Loeb, Levine, & He, 1990). Engineering tools such 
as linear quadratic regulator (LQR) design 
(Athans & Falb, 1966) and optimal feedback 
control (Koppel, Shih, & Coughanowr, 1968) were 
originally devised to provide analytical solutions 
for complex industrial systems like refineries and 
rockets. Computing the optimal biological 
solutions requires a metric for the cost to be 
minimized (see below) plus an invertible model of 
the musculoskeletal system, which is difficult but 
feasible with some simplifications. The solutions 
include the net gains from each sensor to each 
actuator rather than the details of interneuronal 
circuitry, but the gains correspond to the most 
prominent spinal interneuron types (modeled in 
Figure 6). They suggest a plausible substrate for 
the convergence of descending control and 
proprioceptive feedback (G. E. Loeb et al., 1990).  
Experimental Evidence for Internal Models 

Direct evidence of active programming of a  
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regulator can be seen in the ability of the brain to 
reverse the shortest latency, heteronymous stretch 
reflexes from the wrist muscles to the elbow 
muscles in order to facilitate stabilization of the 
hand position when the wrist is in a pronated vs. 
supinated posture (Figure 7) (Weiler et al., 2019). 
It is fair to say that the spinal cord functions as if it 
were a regulator programmed by the brain, but 
this begs the question of how that program is 
computed. The algebraic algorithms used by 
engineers to compute optimal regulator gains 
have no known analogs in neural circuitry, nor is 
there any mathematical method to apportion 
them among the diversely connected interneurons 
of the spinal cord. 

The shortest latency reflexes are interesting 
to neurophysiologists because they can be 
attributed unambiguously to spinal circuitry, but 
they are only a small component of the complete 
response to perturbations. The larger, longer 
latency responses (such as those seen after 50ms 
in Figure 7) provide enough time for any pathway 
to contribute up to and including sensorimotor 
cortex, where timely neural activity 
corresponding to the perturbation and the 
response has been recorded (MacKinnon, Verrier, 
& Tatton, 2000). Optimal feedback control has 
been developed as a theory of computation for the 
motor cortex and voluntary behavior in general 
(Liu & Todorov, 2007; Pruszynski & Scott, 2012; 
Scott, 2004; Todorov & Jordan, 2002). By carefully 
designing the cost function, the performance 
achieved by such optimal controllers can be 
altered to better match experimental data. Cost 
functions typically require some admixture of 
terms related to level of effort (e.g. muscle 
activation, forces produced, energy expended, 
etc.) and to accuracy of performance (e.g. 
trajectory following, end-point error, variance as a 
result of noise, etc.). Unsurprisingly, cost 
functions that emphasize end-point accuracy in 
the face of noise or perturbations often account 
well for experimental data when such accuracy is 
the explicit instruction to the subject. It is useful to 
understand the nature of the mechanical problems 
thereby solved but optimal feedback control does 
not provide hypothetical mechanisms for how 
they are solved. If optimal feedback control is a 
description of performance rather than a theory of 
mechanism, then it comes down to saying that the 
nervous system is good at finding solutions that  
 

 
are close to optimal for the goals of a task (G.E. 
Loeb, 2012). 

If motor programs are computed as needed 
from internal models, then performance should 
improve steadily toward optimal as the internal 
model is refined through practice. If the 
musculoskeletal plant changes, there must be a 
mechanism to update its internal model. Muscles 
can change their force generating capabilities in 
the long term in response to exercise patterns and 
in the short term in response to fatigue or injury. 
Figure 8 shows an example in which subjects 
accommodated to a short-term change in one 
muscle simply by increasing the same pattern of 
recruitment rather than making adjustments 
consistent with a revised internal model (A. de 
Rugy et al., 2012). This result is equally consistent 
with fundamentally limited synergies as well as 
motor habits that persisted over 1.5-2h and 750-
800 trials in this experiment.  The synergies that 
are extracted from the behavior may eventually 
change (as in Fig. 2) as the subject learns to deal 
with a chronic change (Nazarpour, Barnard, & 
Jackson, 2012). In that case, new synergies would 
then suggest motor habits that can be learned and 
adapted rather than reflecting hardwired 
simplifications of redundant musculature. It is 
worth noting that belief in the malleability of 
motor habits provides the conceptual basis and 
the tools for the professions of physical therapy 
and athletic coaching. 

The addition of intermediary circuitry 
between command and motor output plus the 
integration of sensory feedback in that 
intermediary circuitry result in two important 
effects on the motor control problem.  First, this 
essentially precludes the development of an 
internal model of the plant, much less an 
inversion of this model by which to compute 
optimal command signals. If the brain had 
internal models of the plant that it was trying to 
control, those models would have to include all 
spinal interneurons and their connectivity to the 
motor pools and each other as well as the 
mechanical dynamics of the musculoskeletal 
system itself (i.e. everything in Fig. 6 extended to 
all muscles in the body). Second, descending 
control of these interneurons greatly expands the 
redundancy problem (discussed further below) 
because multiple combinations of command 
signals to the interneuronal circuitry can result in  
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the same nominal behavior of the plant (George A 
Tsianos et al., 2014). 

“The motor effect of a central impulse cannot be 
decided at the centre but is decided entirely at the 
periphery….The decisive role in the achievement of 
motor control must be played by afferentation and that 
it is this which determined the physiological 
conductivity of the peripheral synapses and which 
guides the brain centres in terms of the mechanical and 
physiological conditions of the motor apparatus.” N. 
Bernstein, 1940, p.235. 
Learned Repertoire  

If it is impossible to generate the forward and 
inverse models of the plant that are required by 
the strategy depicted in Figure 5, then solutions 
must be learned and recalled rather than 
computed online.  

“The process of practice towards the achievement 
of new motor habits essentially consists in the gradual 
success of a search for optimal motor solutions to the 
appropriate problems….Practice…does not consist in 
repeating the means of solution to a motor problem 
time after time, but in the process of solving this 
problem again and again by techniques which we 
changed and perfected from repetition to repetition.” 
N. Bernstein, 1957, p. 382. 

The feasibility of a “search for optimal motor 
solutions” instead of computing them from models 
depends on what is meant by success. If the 
number of elements to be controlled by the brain 
includes all the various interneuronal circuits as 
well as the motor pools, then the dimensionality 
of the problem is vast. Neither an analytical 
solution nor an exhaustive search is feasible, so 
finding optimal as the one best strategy to minimize 
a cost function is simply not possible (G.E. Loeb, 
2012). Instead, higher organisms that learn tend to 
improve their mean performance over time. Such 
a strategy of gradual optimization is unlikely to 
discover the globally optimal solution and it is 
likely to get stuck in motor habits that are 
suboptimal (what engineers call a local minimum 
in the cost function). It is usually important, 
however, for an organism to discover good-enough 
solutions quickly. The acceptability of this 
strategy depends on the density of and ease of 
finding good-enough solutions afforded by the 
very high-dimensional and highly redundant set 
of circuits that are controlled by the brain. 

The schema illustrated in Figure 9 was 
implemented for control of 2 DOF  
 

 
musculoskeletal models for the wrist and for a 
coplanar elbow and shoulder (Raphael et al., 2010; 
George A Tsianos et al., 2014; G. A. Tsianos, 
Raphael, & Loeb, 2011). The spinal-like regulator 
for planar arm movement consisted of 6 muscles 
(2 antagonist pairs of monoarticular muscles and 
2 biarticular muscles), each equipped with 
realistic models of spindle primary (Ia) afferents 
under fusimotor control (γdynamic and γstatic) and 
Golgi tendon organs (Ib) and with connectivity 
subject to presynaptic inhibition/facilitation (see 
circuitry outlined in Fig. 6). Distributed 
interneuronal circuits included the classical 
connectivity for Ia monosynaptic excitation of 
synergists and reciprocal inhibition of antagonists, 
widespread Ib inhibition, Renshaw inhibitory 
feedback from motoneuron collaterals, and 
propriospinal convergence of Ia and Ib excitation 
with the learned commands en route to 
motoneurons. This resulted in 438 separate, 
initially randomized gains (all receiving 
premovement SET values and a subset receiving 
movement initiating GO values) that the 
controller had to learn to adjust in order to 
accomplish center-out reaches (Fig. 10A). For 
simplicity, the GO commands were simple step 
functions that contained no information about the 
phases of the movement or the temporally 
modulated recruitment of muscles required to 
accelerate, decelerate and stabilize the distal limb 
on the target (Fig. 10B). Nevertheless, it was 
always possible to arrive at good-enough sets of 
gains that produced dynamic muscle activation 
patterns (Fig. 10B), kinematic behaviors and 
energy consumption similar to those observed 
experimentally.  

Importantly, the solution gain sets for 
different initializations of the model system 
depicted in Figure 6 tended to be very different 
(George A Tsianos et al., 2014). Rather than 
rerandomizing the gains to learn each new task, 
starting with one good-enough solution and 
modifying it incrementally to perform other tasks 
resulted in sets of solutions that could be easily 
interpolated to achieve performance goals that 
were intermediate between those for which fully 
trained solutions were available (Figure 10B-D). 
Such a strategy results in families of muscle 
recruitment that might be described efficiently by 
statistical extraction of synergies, but no such 
synergies existed in the system before training. 
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Table 1 

 
All possible sensorimotor control schemes for organisms and machines fall into  

one or a combination of four strategies discussed in the rest of the text. 

 

 
 
 
 
 
 
 
 

 
Figure 1 

 
Computer graphic of the human arm and forearm in the OpenSim platform for modeling 

musculoskeletal dynamics, consisting of 7 degrees of freedom (DOFs) and 50 simulated muscles; 
from (Saul et al., 2015) with permission of the publishers. 
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Figure 2 

 
A rhesus macaque was trained to perform a simple task requiring rapid and precise alternating flexion/extension 
movements of the elbow while the other joints were restrained. The task requires essentially the same joint torque to 
accelerate and decelerate the forearm but generating the same muscle force during the concentric (accelerating or 
agonist) phase requires higher recruitment and much higher energy consumption than during the eccentric 
(decelerating or antagonist) phase (G. A. Tsianos, Rustin, & Loeb, 2012). A. Force-velocity curve for sarcomeres. B. 
Three muscles – biceps long head (BL), biceps short head (BS) and brachioradialis (Br) – are synergists that are 
recruited together to generate flexion torque at the elbow but they have somewhat different musculoskeletal 
architecture. The ratio between moment arm (MA) and fascicle length (LF) governs the velocity seen at the 
sarcomeres for a given angular velocity at the elbow (dashed vertical lines in A.). C. Maximal force generating ability 
compared to isometric for each muscle during the typical acceleration profiles of the flexion and extension phases  
of the task. D. The animal performed several hundred such movements in each daily session (x-axis);  
the ratio of the integrated EMG amplitude during the agonist vs. antagonist phase (y-axis), which  
will always be substantially greater than 1 to compensate for the force-velocity relationship. For the first week, the 
ratios of each muscle were similar but they gradually diverged as the animal learned to use  
BS and Br preferentially to generate torque during the agonist phase.   Data from (Cheng & Loeb, 2008). 
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Figure 3 

A. Subject generating isometric wrist forces in 16 directions. B. Patterns of activity of each wrist muscle (extensor 
carpi radialis longus, ECRl and brevis, ECRb; extensor carpi ulnaris, ECU; flexor carpi ulnaris, FCU; flexor carpi 
radialis, FCR) graphed radially for each direction. C. Pulling direction of each muscle. D. Validation of optimal 
control model to account for human performance while minimizing sum of squared muscle activations. E. Ability of 
number of synergies extracted to account for variance in the EMG records (VAF), the statistical correlation 
coefficient (R2) and aiming error (AE). Adapted from (Aymar de Rugy, Loeb, & Carroll, 2013) with permission of the 
publisher. 
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Figure 4 

 Isometric force vectors for 2D forearm (flexion/extension & pronation/supination) produced by 13 optimally 
recruited muscles (Supinator, SUP; the short and long heads of Biceps Brachii, BIC sh and ln; Brachialis, BRS; 
Brachioradialis, BRD; Pronator Teres, PT; Pronator Quadratus, PQ; the long, medial, and lateral heads of Triceps, 
TRI ln, m, and lt; Extensor Carpi Radialis longus and brevis,  ECRl and ECRb; flexor carpi radialis, FCR). A. 
Pulling directions in 2D space for the 8 muscles typically recordable with surface EMG electrodes. B. Force vectors 
(red + symbols) toward 16 targets computed according to 1-8 synergies extracted (using multiple initializations) 
from the 8 somewhat redundant muscles recordable with surface EMG electrodes. C and D. Pulling directions for the 
8 less-redundant muscles that better reflect the 2D task and simulated force vectors for synergies extracted for those 
muscles. E and F. Synergy performance as in Fig. 3. From (Aymar de Rugy et al., 2013) with permission of the 
publishers. 

 
 

 
Figure 5 

Simplified engineering block diagram for analytical control based on internal models of the system being controlled. 
The Forward Model predicts how the musculoskeletal mechanics of the plant will generate Movement in response to 
commands generated by the Inverse Model. If those commands include errors, the predicted movement can be 
compared to the Desired Movement to request corrective movements. The Inverse Model allows the controller to 
compute commands that will cause the Desired Movement (including corrective movements) to be produced by the 
plant. Dashed lines indicate sensory feedback, which is substantially delayed by musculoskeletal mechanics and 
neural conduction velocity. Adapted from Manto et al., 2013. 
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Figure 6 

For skeletal linkages with more than one DOF (e.g. 2 DOF planar elbow-shoulder schematic at upper right), many 
muscles work sometimes as synergists and sometimes as antagonists (i.e. Partial Synergists). The afferent and 
interneuronal connectivity among their alpha motor pools (α) includes Modeled Pathways that subserve both 
relationships. Descending control from the brain synapses mostly on these interneurons and presynaptically on their 
individual inputs to facilitate or inhibit transmission and on two types of gamma motoneurons that determine the 
length and velocity sensitivity of the spindle Ia receptors in each muscle (Raphael, Tsianos, & Loeb, 2010). For the 6 
muscle model system, this results in 438 variables that the brain adjusts to prepare for a movement (SET) and a 
subset that command the movement itself (GO) (George A Tsianos, Goodner, & Loeb, 2014). Note that this model 
omits the extensive feedback from cutaneous receptors via oligosynaptic interneuronal circuits, which have not been 
well-characterized. 

 

 
Figure 7 

Subjects were asked to maintain the position of a handle against a steady load requiring elbow extension by the 
triceps brachii muscles from which EMG was recorded. A-G. Sudden force pulses perturbed the handle randomly in 
either direction with the forearm and wrist in the upright (pronated; blue traces) or flipped (supinated, red traces) 
posture. H-I. Perturbations that flexed the wrist and stretched the wrist extensor muscles resulted in heteronymous 
short latency reflexes (25-50ms, limited to spinal circuits) that excited the triceps in the upright position (which 
would assist with recovering the target position) and inhibited it in the flipped position (which would prevent it from 
opposing the recovery). J-K. Perturbations that extended the wrist also generated spinal reflexes that were reversed 
appropriately for the task. From (Weiler, Gribble, & Pruszynski, 2019) with permission of the publishers. 
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Figure 8 

 A. Subjects performing the 2D isometric wrist force task described in Fig. 3 were exposed to active lengthening of 
one tetanically stimulated wrist muscle (flexor carpi ulneris, FCU), which produced a short-lived reduction in force 
generation of 15-73%. B. Optimal recruitment patterns for the 16 target directions before and after accounting for 
this reduction. C. Actual recruitment patterns before and after the reduction. From (A. de Rugy, Loeb, & Carroll, 
2012), with permission of the publishers. 

 
 
 
 
 
 

 
Figure 9 

Engineering block diagram for good-enough control in which cerebral cortex performs trial-and-error learning and 
storage of motor programs that control the state of lower sensorimotor centers such as the spinal cord, where they are 
integrated with sensory feedback from the musculoskeletal system. The tasks to be performed are indexed, recalled and 
evaluated in sensory coordinates (Gerald E Loeb & Fishel, 2014; Scott & Loeb, 1993), which facilitates computation 
of cost as difference between sensory feedback expected and received. Reprinted from (G.E. Loeb, 2012) with 
permission of the publishers.  
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Figure 10 

Performance of the learned repertoire control shown in Figure 9. A. Model system for center-out reaching task with 6 
muscles (colored lines) operating coplanar hinge joints at elbow and shoulder to perform center-out reaching tasks to 
blue targets (4 of 16 illustrated). B. Reach trajectories (open circles = 10ms steps) and muscle activations (colored 
lines) after training to targets T1 and T2 and interpolating to generate reach to Ti. Incremental training consisted of 
starting with randomized spinal circuitry control variables, learning to reach T1 and then modifying the same 
program to learn to reach to T2; Reinitialized indicates re-randomizing starting condition before learning to reach to 
T2, for which interpolation is unreliable. C. and D. Ability of incremental training to generate learned programs that 
interpolate for both distance to the target and speed of the reach. Adapted from (George A Tsianos et al., 2014), which 
includes additional examples of learning and interpolation of movement programs that cope with complex external 
loads called curl-fields (perturbing force orthogonal and proportional to velocity in desired direction of reach). 

 
 

 
Figure 11 

The pathways A-E represent the pyramidal, rubrospinal, vestibulospinal, and two tectospinal pathways. Reproduced 
from N. Bernstein, 1935, p. 111, with permission of the publishers. 
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Good-Enough Programs vs. Optimal Control of 
Synergies 
Elements to be Combined 

The storage of motor programs rather than 
their on-line computation from internal models 
raises the question of how many programs must 
be stored to support the very wide range of tasks 
that humans learn to perform (G. E. Loeb, 1983). 
This would be greatly reduced if a relatively 
coarse repertoire of programs can be interpolated 
to perform tasks with intermediate parameters 
such as direction, distance and speed (as 
illustrated in Fig. 10) and even complex loads (e.g. 
learning and interpolation of viscous curl fields 
demonstrated by Tsianos et al., 2014). In that 
sense, the learned, good-enough strategy shares 
something with synergies, which must also be 
weighted and combined to generate any behavior. 
The difference is that an individual “good-
enough” program is good enough to generate one 
useful behavior, whereas an individual synergy is 
not. It is immediately obvious how an infant 
performing thousands of trial-and-error 
movements might learn, store and recall good-
enough programs that generated useful 
movements. Interestingly, roboticists are starting 
to consider strategies whereby robots can explore 
complex environments, learn iteratively to 
perform tasks and build upon a repertoire of 
solutions to address ever more complex tasks 
(Forestier, Mollard, & Oudeyer, 2017). By contrast, 
no mechanism has been proposed to learn 
synergies from scratch; they must be extracted 
statistically from observations of mature behavior.  

The proponents of synergies generally 
assume that the observed synergies are embodied 
by neural circuits that are hard-wired rather than 
learned, sometimes referred to as primitives 
(Giszter, 1992). Some stereotypical circuits that 
might be genetically preprogrammed constitute 
the CPGs for the most primitive and innate 
behaviors such as the coordination of 
quadrupedal locomotion. Quadrupedal 
locomotion in the cat is under the control of a 
spinal CPG that can generate such stereotypical 
patterns of motoneuron activity even in the 
absence of sensory feedback (M. L. Shik & 
Orlovsky, 1976). Nevertheless, idiosyncratic 
differences exist in muscle activation and reflex 
response patterns in intact, normally behaving 
animals (G. E. Loeb, 1993). Asymmetries can be  
 

induced by unilateral surgical alteration of 
hindlimb musculoskeletal mechanics at an early 
age (G. E. Loeb, 1999).  Furthermore, there is little 
reason to expect the elements of quadrupedal 
locomotion to provide a useful basis for playing 
soccer or eating with utensils. It seems unlikely 
that primitives enabling such learned skills arose 
in phylogeny or ontogeny before the skills 
themselves, skills that human infants require 
years to acquire.  

Good-enough control requires another type 
of primitives – a set of spinal circuits that mix 
descending commands with sensory feedback and 
project onto various combinations of motor pools. 
There is no question that such circuits exist. The 
analytical tool used to identify optimal reflex 
gains to stabilize standing posture in the cat 
generated patterns that bore a striking 
resemblance to the most prominent circuits that 
have been identified by neurophysiologists, 
suggesting that these circuits are well-designed 
primitives (G. E. Loeb et al., 1990).  

It is unclear which details of the apparently 
well-designed spinal and other lower 
sensorimotor centers are hard-wired genetically 
and which might arise from Hebbian self-
organization during spontaneous motor activity 
in the fetus (D'elia, Pighetti, Moccia, & 
Santangelo, 2001; Kiehn & Tresch, 2002) and 
motor babbling in the infant (Caligiore et al., 2008; 
Lee, 2011). Many of these centers are also under 
the direct and indirect control of the cerebellum, 
which has its own learning algorithms (Koziol et 
al., 2014). A judicious combination of genetically 
specified and learned control of basic connectivity 
would provide the sort of malleable substrate 
required to accommodate the evolution of new 
species (Enander et al., 2019). Such evolution is 
driven by random mutations of the 
musculoskeletal and other hardware that enable 
improved performance of some important task, 
but such a mutation will not persist unless the 
first individual in which it occurs can 
immediately take advantage of it (Partridge, 
1982). If the spinal circuitry primitives that form 
in an individual animal in some way reflect the 
musculoskeletal mechanics of that individual, this 
challenge becomes tractable. Such adaptive circuit 
primitives then might enable efficient trial-and-
error discovery of sets of motor commands from 
the brain to these circuits that could take full  
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advantage of both normal and mutated 
musculoskeletal mechanics. 
Storage and Recall of Good-Enough Programs 

The schema presented in Figure 9 proposes 
that tasks be defined in the brain by the complete 
set of sensory feedback that is expected when the 
task is being performed successfully. Sensory is 
defined broadly to include all sensory modalities 
(somatosensory, visual, auditory, etc.) plus 
efference copy signals regarding the state of the 
plant while performing the task. The various 
areas of the neocortex consist of neural networks 
that would function as an associative memory 
that stores a repertoire of previously learned 
tasks, indexed according to this sensory 
information and associated with the descending 
programs that performed them.  

In order to perform a task, the brain must 
first associate the sensory information that calls 
for the task (e.g. the appearance of a desirable 
target object) with this stored sensory 
representation of the task being successfully 
performed (e.g. object acquired). That 
representation is then associated with the stored 
motor program that last performed the task. More 
than one such program may be recalled if the 
parameters of the task lie between those of the 
nearest stored programs. The weighted sum of 
those associated motor programs constitutes the 
motor output to the Spinal-Like Regulator, which 
integrates it with concurrent sensory feedback 
and sends it to the motoneurons and 
musculoskeletal system. Before, during and after 
the movement, state and sensory feedback to the 
brain can be compared to the sensory coordinates 
of the task to generate a Cost (a plausible function 
of cerebellum). If the discrepancy is unacceptable, 
the program can be tweaked by the Random Walk 
generator and tried again. The functions of 
judging acceptability and recruiting cortex to 
attend to shortcomings seem compatible with a 
value computation that has been proposed for 
basal ganglia, which is then transmitted to cortex 
via the thalamocortical pathway (Bosch-Bouju, 
Hyland, & Parr-Brownlie, 2013; Nakajima & 
Halassa, 2017). If the tweaked program is better 
than the previously stored program, it can be 
stored in its stead in the cortical Repertoire. 
Because the gains being tweaked randomly (via 
cortical output to the Spinal-Like Regulator) have 
no simple relationship to improvements or  
 

 
deteriorations of performances, such repeated 
practice appears to an observer as a random-walk. 

Storage of tasks in sensory coordinates and 
their association with outputs in motor 
coordinates (descending commands to the Spinal-
Like Regulator and other sensorimotor structures 
as described below) provide an opportunity to 
unify and integrate the classically separate 
behavioral activities of perception and action 
(Gerald E Loeb & Fishel, 2014). Complex 
perceptual tasks such as visual scene recognition 
or haptic object identification are generally 
performed iteratively as a sequence of motor 
actions that shift gaze or move fingers, in turn 
motivated by judgments about the degree of 
concordance with previous experience. Familiar 
scenes and objects are recognized according to the 
sensory information so obtained, which must be 
integrated contextually with the exploratory 
actions that led to that information (Subramanian, 
Alers, & Sommer, 2019).  The internal 
representations of previously experienced entities 
in a self-organizing neural network are gradually 
refined with repeated exposure. Once an entity is 
recognized, the brain often needs to recall and 
consider what actions (motor commands) and 
outcomes (sensory signals) have been associated 
with the entity in order to make strategic plans. 
The schema in Figure 9 might then apply to 
virtually all cortical areas, which have broadly 
similar cytoarchitecture and plastic connectivity 
consisting of ascending afferent information, 
descending efferent projections and reciprocal 
projections with other cortical areas (Diamond, 
1979). 
Responses to Perturbations and Errors  

Most of the literature on synergies is based 
on the study of unperturbed motor tasks. 
Compensations for errors and perturbations 
greatly increases the dimensionality of the 
problem (F.J. Valero-Cuevas, Venkadesan, & 
Todorov, 2009). Accounting for behavior then 
requires the addition of yet more synergies, which 
defeats the simplifying purpose for which they 
were proposed in the first place (Soechting & 
Lacquaniti, 1989). This problem can be overcome 
by allowing synergies to be combined not just by 
adjusting their weights but also by adjusting their 
temporal phases (d'Avella, Fernandez, Portone, & 
Lacquaniti, 2008; Safavynia & Ting, 2012). This 
little addition adds a lot of complexity to the  
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putative neural controller of any such synergies. It 
also provides the experimenter with twice as 
many free variables with which to account 
statistically for behavioral data sets. Furthermore, 
the synergies required to account for 
perturbations must be added to the synergies that 
account for the unperturbed behavior. As 
described above, the addition of more behaviors 
and more perturbations of those behaviors and a 
tightening of the VAF (variance accounted for) all 
lead inexorably to the need to extract yet more 
synergies. It is unlikely that the final tally will be 
less than the reductio ad absurdum suggested by 
allowing both amplitude and phase to be 
controllable:  if each synergy consisted of the 
recruitment of one muscle, then the number of 
synergies required to account perfectly for any 
and all possible EMG patterns must be equal to 
the number of muscles. 

For good-enough control, the motor 
programs that are looked up and interpolated are 
sensorimotor programs that automatically set the 
gains of the circuits responsible for the reflex 
responses because they are the same circuits that 
generate the nominal, unperturbed behavior (Fig. 
6). Descending commands are often described as 
generating excitation of motor pools that happens 
to be modulated by ongoing sensory feedback, 
but the same commands can also be interpreted as 
enabling selected reflex responses to that sensory 
feedback. In order to learn commands that 
anticipate perturbations requiring appropriate 
reflexes (as seen in Fig. 7), the trial-and-error 
learning of those motor programs must include a 
representative set of the perturbations that might 
occur. The huge increase in redundancy presented 
by the numbers of command parameters required 
to control the spinal interneurons offers many 
good-enough solutions for the nominal task but 
fewer that also enable good-enough handling of 
those perturbations. Nevertheless, if good-enough 
solutions can be found readily, it does not matter 
that optimal feedback control solutions can neither 
be found nor computed. Given the inevitable 
noise and variability of biological data, it may not 
even be possible to distinguish good-enough from 
optimal. This presents a problem for experimental 
falsification of either theory by psychophysical 
data. 
Noise, Variability and the Learning Curve 

The psychophysical data already contain  
 

 
information that appears to falsify model-based 
control. All model-based optimal control 
strategies discussed above imply that what is 
learned are changes and improvements to the 
internal model(s) that must be stored in the brain, 
rather than the motor programs that are thereby 
computed analytically. That, in turn, implies that 
motor performance should improve gradually as 
the model is refined and that residual variability 
of an over-learned task should reflect simple, 
stochastic, computational noise. Neither appears 
to be true.  

Data from experiments that require learning 
a new skill are usually summarized in learning 
curves that show gradual improvements in 
performance. Those learning curves are usually 
constructed from averaged performance during 
long training sessions or running averages over 
many trials. This obscures the much larger trial-
to-trial variability that is better described as a 
random walk (Gallistel, Fairhurst, & Balsam, 
2004) and which is familiar to anyone trying to 
acquire a new skill. During acquisition or 
optimization of difficult skills, even running 
averages from day to day may show large 
deviations from steady improvement (e.g. Fig. 2).  

Importantly, a random walk through a local 
cost function does not look like simple noise 
because the next output depends on the cost 
analysis of the previous output (the Read-Write 
loop in Fig. 9). The fluctuations in force generated 
during a simple, isometric force task have been 
attributed to “motor noise” in the stochastic firing 
patterns of motor units (Jones, Hamilton, & 
Wolpert, 2002). These fluctuations generally 
demonstrate constant variance (standard 
deviation as a percentage of mean force) but a 
careful examination of the force variability in the 
frequency domain reveals features incompatible 
with motor noise (Slifkin & Newell, 1999). 
Furthermore, detailed models of motor unit 
recruitment and force generation reveal that 
constant variance would not result from the 
physiology of motor unit recruitment, force 
generation and summation in muscles with elastic 
tendons (Nagamori, Laine, Loeb, & Valero-
Cuevas, 2021). Even at the largely subconscious 
level of moment-to-moment corrections during a 
task, the nervous system seems always to be 
searching actively for improved performance. In 
the oculomotor system, the rate of adaptation to a  
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change in the plant seems to be driven by such 
inherent trial-to-trial variability (Albert, Catz, 
Thier, & Kording, 2012), whereby the new cost of 
each trial drives the iterative process of 
adaptation, exactly as suggested above. 
Distributed Control 

In order to make use of the simplifying 
assumption of synergies or the analytical solution 
of optimal control, a single master controller is 
required to select and modulate the synergies or 
to compute the optimal commands to everything. 
This ignores the most basic anatomical facts about 
efferent pathways as grasped by Bernstein in 1935 
(Figure 11):  there are multiple controllers 
operating simultaneously on the same plant. 

Bernstein assumed additive control at the 
spinal motoneuron as postulated by Sherrington’s 
final common path to the individual muscles (a-f 
in Figure 11), but he had little to say about what 
might be computed or controlled by the various 
inputs to that pathway. For the good-enough 
controller, the contributions of all other centers 
are simply part of the plant that each center is 
attempting to control. The addition of 
intermediary circuitry with computational 
functions of its own provides a basis for 
distributing sensorimotor control among the 
various efferent pathways and combining their 
results in a more useful way than a final common 
path. Simultaneous neural activity consistent with 
such integration has been recorded in motor 
cortex, pontomedullary reticular formation and 
spinal interneurons of non-human primates 
performing a finger dexterity task (Soteropoulos 
& Baker, 2020; Soteropoulos, Williams, & Baker, 
2012). 

From the perspective of one of the efferent 
pathways in Figure 11, for example the pyramidal 
tract from sensorimotor cortex, the other efferent 
pathways are invisible. If the outputs from the 
other pathways are deterministic, their effects 
look to the sensorimotor cortex like just another 
dynamic aspect of the plant through which it 
expresses its own commands. The job of 
sensorimotor cortex is to learn what outputs to the 
rest of the nervous system result in the desired 
sensory feedback (see Fig. 9). Such a 
computational function accommodates another 
inconvenient anatomical fact that is frequently 
overlooked:  many of the efferent pathways 
project to other efferent pathways as well as to the  
 

 
integrative circuits of the spinal cord. For 
example, the sensorimotor cortex and the tectum 
project directly to the red nucleus, the vestibular 
nuclei and the pontomedullary reticular 
formation as well as to spinal cord. This means 
that the set of primitives that are controlled by 
any one efferent source includes all circuits to 
which it projects, which beggars the simplicity 
implied by calling them primitives (Giszter, 1992).  

While the contributions of the various 
efferent centers of the brain may be deterministic, 
they are probably not static. Many centers appear 
to employ their own learning algorithms and/or 
reflect dynamic control by the cerebellum. The 
primate cerebellum contains over 50% of the 
neurons in the brain (Shepherd, 2004). It uses its 
own adaptive control rules to learn useful 
adjustments of the primitives embodied in the 
structures to which it projects directly (e.g. 
vestibular nuclei) or indirectly (via deep cerebellar 
nuclei). Direct cerebellospinal projections have 
recently been identified as important for learning 
coordinated limb movements (Sathyamurthy et 
al., 2020). Simultaneous adaptive plasticity in 
multiple controllers operating on the same plant 
presents obvious challenges to stability from an 
engineering perspective (Narendra, 2016), but 
somehow biological systems evolved to 
accommodate this robustly. This presents 
neurophysiologists and theoreticians with a 
challenge that needs to be investigated rather than 
denied or ignored by simplistic models of a 
singular cortical command center – the little man 
sitting in the control center of the brain. 
Cortical Encoding  

We should not expect the activity that can be 
recorded in any of the efferent pathways to align 
with the sorts of simple physical parameters used 
by engineers and physiologists to describe 
behavior. Neurophysiologists have identified 
correlations between motor cortical activity and 
parameters such as end-point force (Evarts, 1968), 
end-point velocity (Georgopoulos, Schwartz, & 
Kettner, 1986), and activation of individual 
muscles or groups of muscles that might reflect 
control of synergies (Todorov, 2000). This has led 
to claims that such canonical physical parameters 
represent the coordinate frame for commands 
computed by the motor cortex. As Bernstein 
pointed out, however, the muscles, bones and 
joints that constitute the musculoskeletal system  
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are mechanically linked to each other. Forces and 
movements are not independent and neural 
activity recorded in one center may reflect its own 
efferent commands, efferent copy from other 
command centers and/or sensory feedback of 
forces or movements from the plant. It will always 
be possible to find correlations between neural 
activity in higher sensorimotor centers and almost 
any measurements of performance (G. E. Loeb, 
Brown, & Scott, 1996; Scott, 2000), but correlation 
is not causation. This presents a problem for 
experimental falsification of any theory of 
sensorimotor control by an appeal to typical 
neurophysiological data. 

If a neural network learns a good-enough 
program to perform a task involving sequential 
recruitment of various muscles, what neural 
activity would be observed during its execution? 
Such a program would be essentially a learned 
version of the primitive, preprogrammed strategy 
of a central pattern generator (CPG). In a CPG, the 
neural activity responsible for each phase of the 
task drives the next phase; sensory feedback from 
the ongoing movement can modulate a CPG but it 
is not required for it to sequence through phases. 
An observer would find that the neural activity at 
any moment is best predicted by the neural 
activity from the previous moment rather than 
any aspect of the resulting behavior of the plant. 
The engineering term for this is rotational 
dynamics. Such activity has been found in 
primate motor cortex and it is produced by 
artificial neural networks trained to perform 
similar tasks; for recent results and review see 
(Kalidindi et al., 2020). 
General Conclusions 

We have now come full circle to a 
fundamental difference between engineered 
control systems and biological control systems. 
For an engineered system with unlimited 
bandwidth and negligible transmission delay, the 
best control scheme is complete centralization, in 
which one central controller receives and 
integrates all sources of sensory information and 
computes explicit commands to each actuator. 
Schemes for biological control that are derived 
from engineering control theory tend to start with 
this assumption and then add constraints and 
simplifying assumptions such as synergies and 
local servocontrol to make the problem more 
tractable computationally (G. E. Loeb, 1983). Real  
 

 
biological control evolved from and incorporated 
highly distributed and remarkably effective 
controllers such as those still found in 
invertebrates such as cockroaches (Büschges, 
2005) and octopuses (Godfrey-Smith, 2017); see 
(Madhav & Cowan, 2020) for a recent review of 
the implications of such differences for control 
theory.  

As animals became larger and more 
mechanically complex, biological systems 
gradually evolved to handle longer delays and 
larger numbers of sensory and motor signals. 
Those are the conditions for which engineered 
systems begin to use hierarchical control (G. E. 
Loeb, Brown, & Cheng, 1999), such as the fast, 
local servocontrol loops that stabilize the behavior 
of individual motors in robots. The existence of 
spinal reflexes and the identification of circuits 
that at first looked homologous to such 
servocontrol provided support for the notion that 
yet other engineering tools such as inverse 
dynamic analysis, system identification of internal 
models and optimal control might provide a 
theoretical basis for the rest of the biological 
control problem. In fact, the details of the circuits 
that have been elucidated in spinal cord and the 
many other distributed centers that contribute to 
sensorimotor integration look nothing like 
servocontrol. More modern engineering tools like 
linear quadratic regulator design and optimal 
feedback control make better predictions about 
biological circuitry and performance, but they are 
based on computational algorithms that are 
unrealizable in biological development and 
learning. Theories of biological control based on 
currently available control theory from 
engineering are metaphors built on quicksand.  

Successfully evolved humans and well-
engineered anthropomorphic machines can be 
expected to exhibit similar behavior because it is a 
requirement of their success. Engineering tools to 
analyze that behavior can identify the nature of 
the similar problems that must be solved by each 
(as first applied by Bernstein) and an 
understanding of why humans, computational 
models and robots might arrive at behaviors that 
appear to be similar. In order to understand how 
biological systems learn to perform such 
behaviors, we need computational models that 
reflect biologically plausible mechanisms for 
development and learning throughout the life of  
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individual organisms, as well as their evolution in  
 

 
the first place. Such models and a theoretical 
understanding of how they work remain elusive. 
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